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Dynamical origin of uniform sampling in multicanonical ensemble
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The stochastic model describing the sampling process in multicanonical ensemble has been derived by
considering the sampling process as an overdamped Brownian motion on the free energy surface. The essential
dynamics of the multicanonical sampling has been characterized by a Langevin equation in a piecewise
multivalleyed free energy landscape, modulated by a temperature-dependent curvature. Based on the stochastic
model we showed that the multicanonical weight can be determined by interpolating maximum probability
energy points of the canonical samplings at different temperatures.
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I. INTRODUCTION

The potential energy surfaces of many important phys
processes, such as protein folding@1#, cluster melting@2#,
and spin glasses@3#, are characterized by a large number
the local minima separated by high energy barriers. T
conventional simulations based on Monte Calro~MC! or mo-
lecular dynamics~MD! algorithm will become trapped in
one of local energy basins and fail to sample broad regi
of thermally accessible phase space.

During the past decade, several sampling methods h
been proposed to overcome quasiergodicity in the simula
of rough energy landscape. One effective way is to us
non-Boltzman weight generating a random walk on the
ergy space, allowing the system to cross high energy bar
more frequently. This idea is employed in the multicanoni
sampling@4# and an equivalent entropic sampling@5#. The
other alternative is to perform several canonical simulati
simultaneously and allow the system to communicate w
each other at different temperatures as in the parallel tem
ing also known as the replica exchange method@6–8#. The
parallel tempering has been proved to be very effective w
it is combined with the multiple histogram technique@9,10#.
Recently, Wang and Landau@11# have developed a ver
powerful new Monte Carlo sampling technique based on
independent random walks for a different range of energy
those studies, they first determined the density of state a
rately by using a random walk generating a flat histogram
energy space. The resulting pieces of the density of st
estimated from multiple random walks were joined toget
and were used to produce thermodynamic quantities of
nonical ensemble at an arbitrary temperature.

The multicanonical ensemble method@4,5# combined
with MC simulation shows a substantial progress to impro
the ergodic behavior in the studies of the first-order ph
transitions@12# and the protein folding problem@13#. Re-
cently, multicanonical algorithm has also been implemen
to MD by performing an isokinetic MD on the modifie
potential energy surface@14#. Since then multicanonical MD
1063-651X/2003/67~1!/011105~7!/$20.00 67 0111
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has been applied to a variety of systems showing a con
erable enhancement of the sampling efficiency@15#. More
recently, Nose-Hoover MD protocol has also been applied
generate multicanonical ensemble@16#. Despite successfu
applications of multicanonical sampling it has one subst
tial problem. Contrary to the canonical ensemble, the wei
factor, which is inversely proportional to the density of sta
i.e., V(E), is not knowna priori and has to be determine
by an iterative procedure. However, the determination of
exact weight via an iterative process in conventional mu
canonical MD is very difficult and nontrivial becauseV(E)
of the complex system has a very large dynamic range. E
though several attempts have been applied to accelerate
convergence@17#, the unknown weight factor is still limiting
the use of the multicanonical sampling.

In this paper, the characteristic feature of the sampl
dynamics in multicanonical MD has been analyzed in ter
of the stochastic model describing an overdamped Brown
motion. By considering the sampling process as a stocha
diffusion in a free energy potential, we derive a stochas
differential equation~SDE! governing the sampling proces
in canonical and multicanonical ensemble. Based on the
chastic model, we reveal that the uniform sampling in m
ticanonical ensemble is achieved by transforming a comp
free energy surface into a piecewise multivalleyed landsc
structure driven by a stepwise temperature modulation.
analysis also provides one natural way to determine the m
ticanonical weight for the uniform sampling, which does n
resort to the iteration scheme. The detailed dynamics of
multicanonical MD has been verified in the model systems
(Ala)2 dipeptide in a gas and an explicit water phase.

In Sec. II, the basic theory of the sampling process
been explained in terms of SDE. The correspondence
tween the sampling process and the stochastic dynamics
been demonstrated by identifying the transition probabi
of the Markovian stochastic process. In Sec. III, the dyna
ics of multicanonical sampling has been analyzed by
Langevin equation subject to a staircase temperature m
lation. Through this analysis we showed that the fixed poi
©2003 The American Physical Society05-1
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constructed from the average energy and the dynamical
perature play a critical role in the uniform sampling of t
multicanonical ensemble method. The conclusion and a b
summary are presented in Sec. IV.

II. STOCHASTIC DIFFERENTIAL EQUATION
GOVERNING SAMPLING PROCESS

A. Canonical sampling

In the canonical ensemble at the temperatureb0
51/kBT0, the sampling weight of each state with energyE is
given by the Boltzmann factor

wB~E!5e2b0E. ~1!

The probability density function~PDF! in the energy is ob-
tained by multiplying the Boltzmann weightwB by the den-
sity of state of the system,V(E), as

P0~E!5V~E!e2b0E/Z05e2b0A(E)/Z0 , ~2!

whereZ0 is the partition function andA(E) is the free en-
ergy density defined byE2T0S(E), S(E) being the entropy
defined in the microcanonical ensemble askBlnV(E). In a
thermodynamic limit, Eq.~2! reduces to a Gaussian distrib
tion centered about the average energyU0 with the width
equal tos05kBT0

2CV(T0) @18#, CV being the specific heat o
the system, as

P0~E!5
1

A2ps0

expH 2
~E2U0!2

2s0
J . ~3!

Our present study starts from the well-known fact that
PDF of Eq.~2! can be obtained as a stationary solution of
Langevin equation@19#

] tE5G~E!1Af h~ t !, ~4!

where f 52/b0 and G(E)52]EA5T0 /TS(E)21, TS(E)
5@]S/]E#21. The definition ofTS is identical to the statis-
tical temperature defined in the microcanonical ensemble
Eq. ~4!, thermal fluctuations are approximated by unbias
d-correlated Gaussian white noise with^h(t)h(t8)&5d(t
2t8). Then, the sampling process in the canonical ensem
can be considered as a stochastic diffusion modeled by
overdamped Brownian motion in the free energy poten
A(E). The time-dependent probability distribution of Eq.~4!
is determined by solving corresponding Fokker-Planck eq
tion ~FPE! as

] tP5]E@2G~E!P~E,t !1kBT0]EP~E,t !#. ~5!

The Gaussian distribution of Eq.~3! can be obtained by ex
pandingTS(E) at E0 satisfyingTS(E0)5T0 in Eq. ~4! as

] tE52j~T0!~E2E0!1Af h~ t !, ~6!

where j51/T0@]TS /]E#E5E0
5@T0CV(T0)#21, CV being

@]TS /]EuE5E0
#21. It should be noted thatE0 becomes iden-

tical to an average energyU0 in a thermodynamic limit given
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by the definition of]ESuE5E0
51/T0 @18#. Here we truncate

the Taylor series ofTS(E) up to first order by assuming tha
the specific heat is a smooth function aroundT0. Notice that
the coefficient ofnth-order term (n.1) in the Taylor expan-
sion is proportional to (n21)th derivative of the specific
heat. The PDF of Eq.~6! becomes identical to Eq.~3! by
solving the FPE governing Ornstein-Uhlenbeck process@19#.

When the specific heat of the system shows a rapid va
tion or a divergence occurring for the van der Waals loops
the finite system@20#, higher-order terms in the Taylor serie
cannot be neglected. Furthermore, the relation ofTS(E0)
5T0 may not have a unique solution in that case. This me
that the PDF of the canonical sampling shows a nonGaus
distribution. The approximate form of the PDF is determin
by the number of these optimum pointsEi and the values of
local curvaturesj(Ei). Notice that the solutionsEi satisfying
TS(Ei)5T0 correspond to the optimum points of the fre
energy potentialA(E).

The dynamics of Eq.~6! is characterized by identifying
corresponding transition probability governing the stocha
process. From the solution of the FPE subject to an ini
condition P(E8,t)5d(E82E), the transition probability
from (E,t) to (E8,t8) is given by

W@E8t8;Et#5
1

A2ps~D!
expH 2

@X1Y~E!#2

2s~D! J , ~7!

where X5E82E, Y(E)5(E2E0)(12e2jD), and s(D)
5 f /2j(12e22jD), D being the time differencet82t. For a
fixed time stepD, Eq. ~7! determines the dynamics of th
Markov chains in the canonical ensemble. The PDF at ti
t8 is obtained by integrating the probability of all possib
paths from the energyE to E8 multiplied by the probability
being atE at time t as

P~E1X,t1D!5E dE W@X,Y~E!;D#P~E,t !, ~8!

whereP(E,`)5P0(E).
The basic postulate underlying Eq.~8! is the indepen-

dence of the transitionX of any previous history of the dy
namics. Here we assume that the Markov postulate can
attained in MD as an approximation valid when the dyna
ics of many-body system is considered on a relatively coa
time scale. The validity of this assumption can be dem
strated by examining the correspondence between the
chastic process and real sampling process. For that purp
we define some statistical quantities. Assuming thatjD!1
as in usual MD simulation, the energy incrementX shows a
Gaussian distribution as

Q~X!5

E dE W@X,Y#P0~E!

E dXdE W@X,Y#P0~E!

'
e2X2/2sx

A2psx

, ~9!
5-2
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DYNAMICAL ORIGIN OF UNIFORM SAMPLING IN . . . PHYSICAL REVIEW E67, 011105 ~2003!
where sx' f D. Notice that the statistical property ofX is
uniquely determined by the property of the stochastic no
h(t). Next, first and second moments ofX are calculated a
each energyE as

X̄152Y~E!'2jD~E2E0!,

X̄25s~D!1Y~E!2' f D,

respectively, whereX̄n5*2`
` XnW@X,Y#dX. Finally, by inte-

gratingW@X,Y# with respect toX in the limit from 0 to`,
we define the probability for the dynamics to move to a rig
~energy-increasing! direction fromE as

R~E!50.5H 12erfF2
Y~E!

A2s~D!
G J , ~10!

where erf(z)52/Ap*0
ze2y2

dy. On the other hand, the prob
ability moving to a left ~energy-decreasing! direction be-
comesL(E)512R(E). The quantityR(E) or L(E) repre-
sents a randomness of the dynamics in one-dimensi
energy space.

To show the correspondence, we performed the canon
simulations with varying the temperature for (Ala)2 dipep-
tide system in a gas phase whose N and C termini w
blocked with acetyl and N-methyl groups, respectively. T
simulation was performed by the programPRESTO@21# and
the force-field parameters were taken from the all-atom v
sion of AMBER @22#. From the simulation we first evaluat
the values ofD and j(5 f /2s0) by computing the variance
of the distributionsQ(X) andP0(E), respectively. As can be
seen in Fig. 1~a! the distributionsQ(X) are well approxi-
mated by a Gaussian shape. With fixedD andj, numerical
values ofX̄1 and R(E) were plotted with their theoretica
predictions in Figs. 1~b! and 1~c!, respectively. In Fig. 1~c!,
we also plot canonical energy distributions for a comparis
The numerical value ofR(E) was calculated from the simu
lation by counting a right transition at each energy histogr
E. For all temperatures, the simulation results show a g
agreement with the stochastic predictions.

The characteristic feature of the canonical sampling
be seen in the profiles ofR(E). Notice that the maximum
peaks of each canonical distribution exactly correspond
the points ofE0 satisfyingR(E0)50.5. Within a small en-
ergy window aroundE0, the value ofR(E) shows a linear
behavior as 0.5@12g0(E2E0)#, g05Af D/8ps0. This
means that the transition fromE becomes biased to a left o
right direction in one-dimensional energy space depend
on whetherE is greater thanE0 or not, respectively. The bia
in R(E) causes the sampling to be concentrated on the a
age energyE0.

B. Multicanonical sampling

In multicanonical ensemble, the uniform sampling can
obtained by weighing each state of an energyE by the
weight wmc that is inversely proportional toV(E), as

wmc~E!51/V~E!5e2b0amc(E), ~11!
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where amc(E) is the multicanonical potential function. In
Eq. ~11!, the multicanonical sampling was considered as
canonical one on the modified potential energy surfa
amc(E). Thus the energy trajectory in multicanonical e
semble can be generated by performing an isokinetic MD
T0 with a scaled Newton’s equation@14#

ṗi52
]amc~E!

]qi
5

]amc~E!

]E
f i , ~12!

whereqi , pi , and f i correspond to the coordinate, mome
tum, and force of the particlei on the original potential en-

FIG. 1. ~a! The distribution of an energy incrementX, Q(X), ~b!

the first momentX̄1, and~c! the right transition probabilityR(E) in
canonical ensembles atT5150, 300, 500, and 700 K for (Ala)2 in
a gas phase. In~b! and ~c!, theoretical predictions are plotted a
solid lines. The canonical distributionsP0(E) in ~c! are magnified
by four times for comparison.
5-3
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KIM, FUKUNISHI, AND NAKAMURA PHYSICAL REVIEW E 67, 011105 ~2003!
ergy surfaceE, respectively. Notice that the derivative of th
multicanonical potentialamc corresponds to the force scalin
factor in Eq.~12!. In the usual case, the simulation procee
by determining the weightwmc iteratively from previous
simulations sinceV(E) is not knowna priori.

The connection between the sampling dynamics and
corresponding stochastic process in a multicanonical
semble can be shown by considering the simulation with
arbitrary weightw(E)5e2b0a(E). For a given weightw(E),
the PDF becomes

Pa~E!5e2b0Aa(E)/Za@b0#, ~13!

whereAa(E)5a(E)2T0S(E) andZa is the partition func-
tion defined by*e2b0Aa(E)dE. The stochastic differentia
equation governing the multicanonical sampling can be
rived by replacingGa(E)52]EAa for G in Eq. ~4! as

] tE5$T0 /TS~E!2]a~E!/]E%1Af h~ t !

5$1/T̃S~E!21/T̃a~E!%1Af h~ t !, ~14!

where T̃S(E)5TS(E)/T0 and T̃a(E)5@]a(E)/]E#21. No-
tice that the drift term in Eq.~14! is uniquely determined by
the derivative ofa(E) corresponding to the force scalin
factor.

The role ofT̃a in the sampling process of multicanonic
MD can be clearly understood whenT̃a(E) is constant for a
whole range ofE. If T̃a(E)5l in Eq. ~14! wherel is an
arbitrary positive constant, the Taylor expansion ofTS at E08
satisfying TS(E08)5lT05T08 gives the canonical PDF at
scaled temperatureT08 . Therefore, the inverse of the deriva
tive of a(E) can be considered as a scaling factor for
temperature. This interpretation can also be seen in MC
sion of the multicanonical ensemble@23#. The acceptance
ratio for a given single MC step fromE to E8 for the multi-
canonical sampling is given byA(E)5exp$S(E)2S(E8)%. In
a large system whereS(E)/N is a smooth function of the
energy densityE/N, the expansion ofS(E) with respect to
E82E gives acceptance ratioA(E)5exp$2(E82E)/TS(E)%.
Thus the multicanonical sampling at the energyE has exactly
the same acceptance ratio as the simulated annealing
temperatureTS(E). In this respect, the sampling subject
the weighta(E) can be considered as a repeated annea
with an energy dependent heating and cooling sched
modulated byT̃a(E).

The transition probability describing the multicanonic
sampling cannot be defined since it is difficult to obtain t
time-dependent solution of FPE corresponding to Eq.~14!
for generalGa . However, for an infinitesimal time interva
D, the FPE gives an approximate transition probability@19#
as

Wa@X,Ya~E!#5
1

A2psa

expH 2
@X1Ya~E!#2

2sa
J , ~15!
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whereYa(E)52Ga(E)D andsa5 f D. The first and second
moments ofX are calculated by puttingYa and sa in the
canonical formulation. Also, the right transition probability
given by

Ra~E!50.5H 12erfFADGa~E!

A2 f
G J . ~16!

The uniform sampling can be obtained from a generation
a random walk on the energy space by forcing a condition
Ra5La , i.e., Ga50. Thus the stochastic process modeli
multicanonical sampling corresponds to a free Brownian m
tion on the energy space by coincidingT̃a with T̃S . How-
ever, the problem still remains unsolved becauseT̃S is not
known a priori.

III. STAIRCASE TEMPERATURE MODULATION

The essential point of the multicanonical sampling is t
weight-dependent temperature modulation ofT̃a(E) as was
seen in Eq.~14!. Then, how does the temperature modulati
realize the uniform sampling in the energy space? The c
acteristic dynamics of Eq.~14! can be captured by approx
mating T̃a(E) by a following staircase function:

T̃a
M~E!5 (

i 51

M21

T̃ihi~E!, ~17!

where T̃i5@ T̃S(Ei)1T̃S(Ei 11)#/2 and hi(E)5u(E
2Ei)u(Ei 112E), u(E) being the Heaviside step function
Here,Ei is an arbitrary chosen discrete energy in ascend
order of E1,•••,EM within a prescribed energy rang

@E1 ,EM#. To eliminate a boundary effect we setT̃a
M(E)

5T̃1 and T̃M for E,E1 and E.EM , respectively. Here it
should be noted that the effective temperatureT̃a(E) is a
constantT̃i for each energy range@Ei ,Ei 11#. This means
that the sampling dynamics generates an energy trajec
that samples a canonical ensemble at a temperatureTi

5T̃iT0 for each energy basin@Ei ,Ei 11#. Next, by approxi-
mating T̃S(E) with its Taylor expansion atEi* satisfying

T̃S(Ei* )5T̃i for each energy basin@Ei ,Ei 11#, we have

Ga
M~E!5 (

i 51

M21

2j~Ti !~E2Ei* !hi~E!. ~18!

The stationary solution associated withT̃a
M(E) becomes

Pa
M~E!;expH 2 (

i 51

M21
~E2Ei* !2

2s i
hi~E!J , ~19!

where s i5kBTi
2CV(Ti). Taking an infinite limit ofM→`

we can recover the uniform distribution. The key point of t
staircase approximation is to transform a complex free
ergy surface into a multivalleyed landscape structure. Div
ing the energy space into smaller canonical basins all val
are parametrized to have a parabolic shape with a curva
5-4
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DYNAMICAL ORIGIN OF UNIFORM SAMPLING IN . . . PHYSICAL REVIEW E67, 011105 ~2003!
being s i
21 and position of the center beingEi* . The free

energy barriers between the valleys become small to be c
parable with thermal fluctuations with an increase ofM, al-
lowing the dynamics to sample all over energy basins.

Our analysis based on the staircase approximation giv
natural way to realize an uniform sampling. Denoti
T̃S(Ei* )5T̃i , an explicit form ofT̃S(E) can be estimated by

interpolating a maximum probability energy set@Ei* ,T̃i #
from preliminary canonical simulations. Notice thatEi* cor-
responds to the maximum probability energy for each
nonical basin in Eq.~19!. In the present (Ala)2 system in a
gas phase, we construct the multicanonical weightT̃max(E)
@see Fig. 2~a!# by interpolatingEi* obtained from the canoni
cal simulations atTi525, 50, 100, 150, 200, 300, 400, 50
600, and 700 K. By substitutingT̃max

21 for the force scaling
function in Eq. ~12!, we performed multicanonical MD a
T05700 K. Resulting energy distributionPmax(E) in Fig.
2~b! shows an uniform sampling for all energy range. W
would like to emphasize that our result is obtained direc
from the estimation ofT̃a(E), contrary to conventional ap
proaches correcting the multicanonical potentiala(E) via
iterative simulations.

FIG. 2. ~a! The effective temperatureT̃max ~solid line! andT̃ave

~dashed line! constructed from the maximum probability energyEi*
and the average energyUi , respectively, for (Ala)2 in a gas phase
~b! The probability distributionsPmax and Pave obtained from the

multicanonical simulation (T05700 K) based onT̃max and T̃ave ,
respectively.
01110
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By noting thatEi* converges to an average energyU@ T̃i #
in the thermodynamic limit, a necessary condition for t
uniform sampling is derived as

E5U@ T̃S~E!#, ~20!

from the extension of the staircase approximation to a c
tinuous limit in Eq. ~19!. DeterminingT̃S5h21(E) by in-
verting a functional relationshipU5h(T̃) of the canonical
simulations, the fixed point condition of Eq.~20! can be
satisfied for allE. This means that in a large system, we c
obtain an uniform sampling by constructingT̃a from an av-
erage energy set@Ui ,T̃i #. To confirm this, we applied ou
method to the solvated (Ala)2 system in which the dynamic
energy range is very large. The multicanonical weight in F
3~a! is constructed from the average energy set obtai
from the canonical simulations atTi5240, 260, 280, 300,
340, 380, 420, 460, and 500 K. Even though the samp
energy range is huge the result shows an impressive unif
distribution over the whole energy region as in Fig. 3~b!.
However, for a small system like (Ala)2 in a gas phase, the
maximum probability energyEi* has to be used for an est

mation of T̃a . Even though there is a small difference b

FIG. 3. ~a! The effective temperatureT̃ave and~b! the resulting
probability distributionPave of (Ala)2 in an explicit water phase
The filled squares in~a! represent the average energies at ea
canonical temperature. The multicanonical simulation was p
formed atT05500 K.
5-5
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KIM, FUKUNISHI, AND NAKAMURA PHYSICAL REVIEW E 67, 011105 ~2003!
tween T̃max and T̃ave @see Fig. 2~a!#, the resultingPave
shows a significant deviation fromPmax in Fig. 2~b!.

When we approximateT̃S by T̃a in Eq. ~20!, the fixed
point E* 5U@ T̃a(E* )# plays a very important role in sam
pling dynamics. Notice that the free energy potentialAa(E)
has stationary points atE* corresponding to crossing poin
of T̃a and T̃S . Qualitative properties of the sampling can
characterized by identifying the stability of each fixed poi
which is determined by@24#

k~E* !5U ]U

]Ta

]Ta

]E U
E*

5
CV~E* !

Ca~E* !
, ~21!

whereCa5]E/]Ta . The value ofk determines a local cur
vature of the free energy potentialAa at E* . The stable fixed
points corresponding tok(ES* ),1 attract nearby probability
currents toward it sinceAa is concave atES* . CrossingES* ,
Ra that was greater thanLa for E,ES* becomes less thanLa

for E.ES* . Near unstable fixed points ofk(EU* ).1, the
probability currents flow away fromEU* , showing an oppo-
site behavior inRa due to the convexity ofAa . Conse-
quently, the sampling concentrates on the isolated st
fixed points. The role of the fixed points can be demonstra
numerically in the multicanonical simulation of the stairca
weight function. In Fig. 4~b!, the probability distributions
Pa

M obtained from an artificially constructedT̃a
M @see Fig.

4~a!# are plotted forM56 and 11, respectively. Notice tha
the peaks ofPa

M in each canonical basin exactly correspo
to the stable fixed pointsEi* determined by horizontal cross

ing points ofT̃a
M and T̃max in Fig. 4~a!. On the other hand

Pa
M shows a local minimum at the unstable fixed points c

responding to the basin boundariesEi of T̃a
M . Here we re-

gard T̃max as an exact weight because it gives the unifo
PDF as was shown in Fig. 3~b!.

The efficiency of the sampling depends on how easily
dynamics escapes from one basin attraction and transi
another one. The transition rate can be quantified by ca
lating the bias ofRa at each basin attraction. In the stairca
approximation,Ra shows a ratchet structure@see Fig. 4~c!#
as

Ra
M~E!'0.5(

i 51

M21

@12g i~E2Ei* !#hi~E!, ~22!

where g i5Af D/8ps i . The slope ofRa(Ei* ), i.e. g i , be-
comes very steep at low temperature energy region bec
it is inversely proportional to the temperatureTS . Severely
biasedRa becomes an obstacle to the transition between
canonical basins around the stable fixed points, causin
localization of the sampling in the low-energy region@25#.
To avoid a trapping of the sampling in low-energy region, t
basin attraction has to be reduced comparable with the
tistical fluctuations ofkBT0 by creating more fixed points. A
expected, the increase ofM enhances the transitions betwe
the canonical basins by lowering the free energy barr
between the basins and results in a broader sampling as
01110
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be seen in Fig. 4~b!. The discontinuities inRa
M at basin

boundariesEi originate in the stepwise jumps inT̃a
M . On the

other hand,Rmax shows a typical random walk producin
uniform distribution ofPmax.

IV. CONCLUSION

The sampling process of molecular dynamic simulation
a multicanonical ensemble has been analyzed by conside
the sampling process as a stochastic diffusion modeled

FIG. 4. ~a! T̃a
M(E) for M56 ~dotted line! and 11~dashed line!

scaled byT05700 K for (Ala)2 in a gas phase. The crossing poin

of T̃max ~solid line! andT̃a
M(E) correspond to the fixed points in Eq

~20!. ~b! The energy distributionsPa
M(E) based onT̃a

M(E) show
maximum peaks at the stable fixed pointEi* in each canonical
basin. ~c! Ratchet structure of the right transition probabilities
Ra

M(E).
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Langevin equation. The characteristic features of the s
pling dynamics have been identified by computing the tr
sition probability of the Markovian stochastic process. T
correspondence between the sampling and the stochastic
cess has been demonstrated numerically by comparing
simulation results with the theoretical predictions. The n
essary condition for the uniform sampling has been deri
by analyzing the sampling dynamics in terms of the stoch
tic model subject to the staircase temperature modulat
Our analysis reveals that the dynamical origin of the unifo
sampling in multicanonical MD is the formation of the infi
nite number of the fixed points, which makes the dynam
move constantly between the canonical basin attractions
lowering the free energy barriers. Finally, we showed that
weight factor in multicanonical MD can be determined
m

01110
-
-

e
ro-
he
-
d
s-
n.

s
by
e

interpolating the maximum probability energy points of t
canonical samplings at different temperatures. In contras
the previous multicanonical MD updating the multicanonic
potentiala(E) iteratively @14#, our method is based on th
direct estimation of the derivative of the multicanonical p
tential, i.e.,T̃a(E).
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