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Dynamical origin of uniform sampling in multicanonical ensemble
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The stochastic model describing the sampling process in multicanonical ensemble has been derived by
considering the sampling process as an overdamped Brownian motion on the free energy surface. The essential
dynamics of the multicanonical sampling has been characterized by a Langevin equation in a piecewise
multivalleyed free energy landscape, modulated by a temperature-dependent curvature. Based on the stochastic
model we showed that the multicanonical weight can be determined by interpolating maximum probability
energy points of the canonical samplings at different temperatures.
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I. INTRODUCTION has been applied to a variety of systems showing a consid-
erable enhancement of the sampling efficiefit$]. More

The potential energy surfaces of many important physicatecently, Nose-Hoover MD protocol has also been applied to
processes, such as protein foldifi], cluster melting[2],  generate multicanonical ensemi&6]. Despite successful
and spin glass€s3], are characterized by a large number of applications of multicanonical sampling it has one substan-
the local minima separated by high energy barriers. Thusial problem. Contrary to the canonical ensemble, the weight
conventional simulations based on Monte CAMC) or mo-  factor, which is inversely proportional to the density of state,
lecular dynamics(MD) algorithm will become trapped in i.e., Q(E), is not knowna priori and has to be determined
one of local energy basins and fail to sample broad regionby an iterative procedure. However, the determination of the
of thermally accessible phase space. exact weight via an iterative process in conventional multi-

During the past decade, several sampling methods haweanonical MD is very difficult and nontrivial becau$g E)
been proposed to overcome quasiergodicity in the simulationf the complex system has a very large dynamic range. Even
of rough energy landscape. One effective way is to use #ough several attempts have been applied to accelerate the
non-Boltzman weight generating a random walk on the enconvergenc¢l7], the unknown weight factor is still limiting
ergy space, allowing the system to cross high energy barrietbe use of the multicanonical sampling.
more frequently. This idea is employed in the multicanonical In this paper, the characteristic feature of the sampling
sampling[4] and an equivalent entropic samplif§]. The  dynamics in multicanonical MD has been analyzed in terms
other alternative is to perform several canonical simulation®f the stochastic model describing an overdamped Brownian
simultaneously and allow the system to communicate withmotion. By considering the sampling process as a stochastic
each other at different temperatures as in the parallel tempediffusion in a free energy potential, we derive a stochastic
ing also known as the replica exchange metf®d8]. The differential equationNSDE) governing the sampling process
parallel tempering has been proved to be very effective whem canonical and multicanonical ensemble. Based on the sto-
it is combined with the multiple histogram technigige10]. chastic model, we reveal that the uniform sampling in mul-
Recently, Wang and Landalll] have developed a very ticanonical ensemble is achieved by transforming a complex
powerful new Monte Carlo sampling technique based on théree energy surface into a piecewise multivalleyed landscape
independent random walks for a different range of energy. Irstructure driven by a stepwise temperature modulation. Our
those studies, they first determined the density of state accanalysis also provides one natural way to determine the mul-
rately by using a random walk generating a flat histogram irticanonical weight for the uniform sampling, which does not
energy space. The resulting pieces of the density of statagsort to the iteration scheme. The detailed dynamics of the
estimated from multiple random walks were joined togethemulticanonical MD has been verified in the model systems of
and were used to produce thermodynamic quantities of cg-Ala), dipeptide in a gas and an explicit water phase.
nonical ensemble at an arbitrary temperature. In Sec. Il, the basic theory of the sampling process has

The multicanonical ensemble methdd,5] combined been explained in terms of SDE. The correspondence be-
with MC simulation shows a substantial progress to improvaween the sampling process and the stochastic dynamics has
the ergodic behavior in the studies of the first-order phaséeen demonstrated by identifying the transition probability
transitions[12] and the protein folding probleril3]. Re-  of the Markovian stochastic process. In Sec. lll, the dynam-
cently, multicanonical algorithm has also been implementedcs of multicanonical sampling has been analyzed by a
to MD by performing an isokinetic MD on the modified Langevin equation subject to a staircase temperature modu-
potential energy surfadd 4]. Since then multicanonical MD lation. Through this analysis we showed that the fixed points
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constructed from the average energy and the dynamical teniy the definition of&Ele:Eoz 1/T, [18]. Here we truncate

perature play a critical role in the uniform sampling of the the Taylor series oT §(E) up to first order by assuming that
multicanonical ensemble method. The conclusion and a brighe specific heat is a smooth function arotid Notice that

summary are presented in Sec. IV.

Il. STOCHASTIC DIFFERENTIAL EQUATION
GOVERNING SAMPLING PROCESS

A. Canonical sampling

In the canonical ensemble at the temperatysg
=1/kgTy, the sampling weight of each state with eneEjig
given by the Boltzmann factor

wg(E)=e"FoF, ()
The probability density functiotiPDF) in the energy is ob-
tained by multiplying the Boltzmann weightg by the den-
sity of state of the systenf)(E), as

Po(E)=Q(E)e FoE/z = PoAB)/Z,, 2
whereZ, is the partition function and\(E) is the free en-
ergy density defined bl —TyS(E), S(E) being the entropy
defined in the microcanonical ensemblelg$nQ(E). In a
thermodynamic limit, Eq(2) reduces to a Gaussian distribu-
tion centered about the average eneldy with the width
equal too=kgT2C\/(To) [18], Cy being the specific heat of

the system, as
=
ex
27oy

Our present study starts from the well-known fact that th

3 (E_Uo)z]

Po(E) = 5o

)

Langevin equatiof19]

HE=T(E)+ /T (1), (@)

Where f:2/ﬂo and F(E): _&EA:To/Ts(E)_l, Ts(E)
=[dS/9E] . The definition ofTg is identical to the statis-

the coefficient ohth-order term > 1) in the Taylor expan-
sion is proportional to rf—1)th derivative of the specific
heat. The PDF of Eq(6) becomes identical to Eq3) by
solving the FPE governing Ornstein-Uhlenbeck pro¢&sé

When the specific heat of the system shows a rapid varia-
tion or a divergence occurring for the van der Waals loops of
the finite systeni20], higher-order terms in the Taylor series
cannot be neglected. Furthermore, the relationTefE)
=T, may not have a unique solution in that case. This means
that the PDF of the canonical sampling shows a nonGaussian
distribution. The approximate form of the PDF is determined
by the number of these optimum poiriEs and the values of
local curvatureg(E;). Notice that the solutiong; satisfying
T<(E;j) =Ty correspond to the optimum points of the free
energy potentiaA(E).

The dynamics of Eq(6) is characterized by identifying
corresponding transition probability governing the stochastic
process. From the solution of the FPE subject to an initial
condition P(E’,t)=68(E'—E), the transition probability
from (E,t) to (E’,t") is given by

[X+Y(E)]?
20(4)

WI[E't";Et]= \/%m)exp{— } (7)

where X=E'—E, Y(E)=(E—Ey)(1—e ¢*), and o(A)
=f/2¢(1—e %), A being the time difference —t. For a
fixed time stepA, Eq. (7) determines the dynamics of the

- h ’ 8viarkov chains in the canonical ensemble. The PDF at time
PDF of Eq.(2) can be obtained as a stationary solution of thet,

is obtained by integrating the probability of all possible
paths from the energl to E' multiplied by the probability
being atE at timet as

P(E+X,t+A)=de WX, Y(E);AIP(E,t), (8

tical temperature defined in the microcanonical ensemble. In
Eq. (4), thermal fluctuations are approximated by unbiased

S-correlated Gaussian white noise withy(t) 7(t"))= 5(t

whereP(E,»)=Py(E).

—t'). Then, the sampling process in the canonical ensemble The basic postulate underlying E(g) is the indepen-
can be considered as a stochastic diffusion modeled by théence of the transitioX of any previous history of the dy-
overdamped Brownian motion in the free energy potentianamics. Here we assume that the Markov postulate can be

A(E). The time-dependent probability distribution of E4)

attained in MD as an approximation valid when the dynam-

is determined by solving corresponding Fokker-Planck equal®s of many-body system is considered on a relatively coarse

tion (FPE as

The Gaussian distribution of E¢3) can be obtained by ex-
pandingTg(E) at Eq satisfyingTg(Eg) =T, in Eq. (4) as
HE=—E&(To)(E—Ep)+Tn(1), (6)

where §:: 1/T0[(9T5/6E]E:E0:[T0CV(T0)]71, CV being
[aTS/&E|E:EO]‘1. It should be noted thdt, becomes iden-
tical to an average energdy, in a thermodynamic limit given

time scale. The validity of this assumption can be demon-
strated by examining the correspondence between the sto-
chastic process and real sampling process. For that purpose,
we define some statistical quantities. Assuming that1

as in usual MD simulation, the energy increménshows a
Gaussian distribution as

f dE W X,Y]Py(E) o~ X120,

f dXAE WX, Y]Po(E) V2Tox

Q(X)= SN0
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where o,~fA. Notice that the statistical property of is 1 T T
uniquely determined by the property of the stochastic noise
7(t). Next, first and second moments Xfare calculated at
each energf as

|
T=700
T=500

X1=—Y(E)=—£A(E—Ey),

Xo=0(A)+Y(E)2~fA,

respectively, wherX,= f“ _ X"W[ X,Y]dX. Finally, by inte-
grating W[ X, Y] with respect toX in the limit from O too,

we define the probability for the dynamics to move to a right
(energy-increasingdirection fromE as

__Y®
V20(d)

where erf(z)=2/\/;fée’y2dy. On the other hand, the prob-
ability moving to a left (energy-decreasingdirection be-
comesL(E)=1—-R(E). The quantityR(E) or L(E) repre-
sents a randomness of the dynamics in one-dimensional
energy space.

To show the correspondence, we performed the canonical
simulations with varying the temperature for (AJadlipep-
tide system in a gas phase whose N and C termini were
blocked with acetyl and N-methyl groups, respectively. The
simulation was performed by the prograsResTO[21] and
the force-field parameters were taken from the all-atom ver-
sion of AMBER [22]. From the simulation we first evaluate
the values ofA and ¢(=f/20) by computing the variance
of the distributiongQ(X) andPy(E), respectively. As can be
seen in Fig. (@) the distributionsQ(X) are well approxi- —
mated by a Gaussian shape. With fixe@dand &£, numerical T

values ofX; and R(E) were plotted with their theoretical
predictions in Figs. () and Xc), respectively. In Fig. (),

we also plot canonical energy distributions for a comparison.
The numerical value oR(E) was calculated from the simu-
lation by counting a right transition at each energy histogram
E. For all temperatures, the simulation results show a good E (kcal/mol)

agreement with the stochastic predictions.

The characteristic feature of the canonical sampling can FIG- 1. (&) The distribution of an energy incremextQ(X), (b)
be seen in the profiles d’(E). Notice that the maximum the first momenk,, and(c) the right transition probabilitR(E) in
peaks of each canonical distribution exactly correspond t&anonical ensembles @t= 150, 300, 500, and 700 K for (Alg)n
the points ofE, satisfyingR(E,)=0.5. Within a small en- 2 g_as_phase. o) anq (o), t_hepret_lcal pred!ctlons are plott_e_d as
ergy window arouncE,, the value ofR(E) shows a linear solid lines. The canonical distributior®,(E) in (c) are magnified

behavior as OB —yo(E—Eg)], vo=\fA/8ma,. This PY fourtimes for comparison.
means that the transition frof becomes biased to a left or

right direction in one-dimensional energy space dependin : . ! .
on whetheiE is greater thar, or not, respectively. The bias %q. (11)’ the multicanonical sg_mpllng was considered as the
canonical one on the modified potential energy surface

in R(E) causes the sampling to be concentrated on the aveHmC(E)_ Thus the energy trajectory in multicanonical en-
age energy,.

semble can be generated by performing an isokinetic MD at
T, with a scaled Newton’s equatidqi 4]

R(E)=0.5{ 1—erf ] (10)

where a,((E) is the multicanonical potential function. In

B. Multicanonical sampling
_ damd E) _ damd E) .
a4 JE U

In multicanonical ensemble, the uniform sampling can be
obtained by weighing each state of an eneigyby the
weightw,,. that is inversely proportional t&(E), as

(12

whereq;, p;, andf; correspond to the coordinate, momen-
W E)=1/Q(E)=e Poemd®), (11 tum, and force of the particleon the original potential en-
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ergy surfacek, respectively. Notice that the derivative of the whereY (E)=—-T,(E)A ando,=fA. The first and second
multicanonical potentiad,,. corresponds to the force scaling moments ofX are calculated by puttiny, and o, in the
factor in Eq.(12). In the usual case, the simulation proceedscanonical formulation. Also, the right transition probability is
by determining the weightv,,. iteratively from previous given by

simulations sinc&)(E) is not knowna priori.

The connection between the sampling dynamics and the \/KFQ(E)
: ) ) ; ; i R,(E)=0.5{ 1—erff ———| ;. (16)
corresponding stochastic process in a multicanonical en \/ﬁ

semble can be shown by considering the simulation with an
arbitrary weightw(E) =e~#0*(®), For a given weightv(E),  The uniform sampling can be obtained from a generation of

the PDF becomes a random walk on the energy space by forcing a condition of
R,=L,, i.e.,,I',=0. Thus the stochastic process modeling
P (E)=e FoAdB)7 8.1, (13 multicanonical sampling corresponds to a free Brownian mo-

tion on the energy space by coincidifig, with Ts. How-

whereA (E) = a(E)—T,S(E) andZ, is the partition func-  €Vver, the problem still remains unsolved becaliges not
tion defined by e PoA«(E)JE. The stochastic differential knowna priori.
equation governing the multicanonical sampling can be de-

rived by replacingl’ ,(E)=—dgA,, for I" in Eq. (4) as Ill. STAIRCASE TEMPERATURE MODULATION
The essential point of the multicanonical sampling is the
HE={To/Ts(E)— da(E)/dE}+ (1) weight-dependent temperature modulationTgfE) as was

seen in Eq(14). Then, how does the temperature modulation
realize the uniform sampling in the energy space? The char-
acteristic dynamics of Eq14) can be captured by approxi-
where T¢(E)=T«(E)/T, and T (E)=[da(E)/JE] L. No- matingT,(E) by a following staircase function:

tice that the drift term in Eq(14) is uniquely determined by M-1
the derivative ofa(E) corresponding to the force scalin = =

factor a(E) ponding g T™ME)= 2‘,1 Tihi(E), (17)

The role ofT,, in the sampling process of multicanonical o 5
MD can be clearly understood whé,(E) is constant fora Where Ti=[Tg(Ej)+Tg(Ei;1)]/2 and hi(E)=6(E
whole range ofE. If T,(E)=\ in Eq. (14) where\ is an _Ei)a(Eﬁ*l_E)’ _Q(E) being the_ Heaviside step funct|on_.
arbitrary positive constant, the Taylor expansiorilrgfat E; Here, E; is an arbitrary cho;en dlscrete_ energy in ascending

e N T ) order of E;<---<Ey within a prescribed energy range
satisfying Tg(Ej) =ATo=T, gives the canonical PDF at a o =
scaled temperatur€). Therefore, the inverse of the deriva- [E1,Ev]. To eliminate a boundary effect we s&f, (E)
tive of «(E) can be considered as a scaling factor for the=T; and Ty for E<E; andE>Ey, respectively. Here it
temperature. This interpretation can also be seen in MC veshould be noted that the effective temperatlifdE) is a
sion of the multicanonical ensemb|@3]. The acceptance constantT; for each energy ranggg;,E;,,]. This means
ratio for a given single MC step frofa to E' for the multi-  that the sampling dynamics generates an energy trajectory
calnonical s?mplinﬁ iSS?IiE\;?IQI W(E):exg{r;s(fE)_ts'(E,)}.f Itnh that samples a canonical ensemble at a temperafure
a large system wher is a smooth function of the _=x e -
energy densityE/N, the expansion oS(E) with respect to _T'_TO ]Pr each energy basirE, ’E'“].' Next,*by approx
E'—E gives acceptance ratia(E) =exp|— (E'—E)/T(E)}. Lnatlng TSL(E) with its Taylor expansion aE;" satisfying
Thus the multicanonical sampling at the enefgyas exactly ~ Ts(Ef') =T; for each energy basiE; ,E; ], we have
the same acceptance ratio as the simulated annealing at a
temperaturelTg(E). In this respect, the sampling subject to

={1T(E)— 1T (E)} + Vin(D), (14)

M-1

TY(E)= > —&T)(E—E")hi(E). (18)

the weighta(E) can be considered as a repeated annealing =

with an energy dependent heating and cooling schedule

modulated byT ,(E). The stationary solution associated wiklf (E) becomes
The transition probability describing the multicanonical _—

sampling cannot be defined since it is difficult to obtain the M (E-Ef)?

time-dependent solution of FPE corresponding to @df) Pa(E)~exp — ;1 207 hi(B)(, (19

for generall’ ,. However, for an infinitesimal time interval

A, the FPE gives an approximate transition probab[lit§]  where o;;=kgT?C\(T;). Taking an infinite limit of M — oo

as we can recover the uniform distribution. The key point of the
staircase approximation is to transform a complex free en-
ergy surface into a multivalleyed landscape structure. Divid-

], (15) ing the energy space into smaller canonical basins all valleys
are parametrized to have a parabolic shape with a curvature

[X+Ya(E)]?

1
exp —
V27o, p[ 20,

WX, Y (E)]=
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FIG. 3. (a) The effective temperaturE,,, and(b) the resulting
probability distributionP,,. of (Ala), in an explicit water phase.
The filled squares ina) represent the average energies at each
canonical temperature. The multicanonical simulation was per-
formed atT,=500 K.

FIG. 2. (a) The effective temperaturg,, (solid line) and T,
(dashed lingconstructed from the maximum probability enefgy
and the average enerdy; , respectively, for (Ala) in a gas phase.
(b) The probability distribution$,,,, and P, obtained from the
multicanonical simulation =700 K) based ol ., and Ta,e,

respectively. ) ~
By noting thatE’ converges to an average enetdyT;]

in the thermodynamic limit, a necessary condition for the

. 71 e . *
: f th * . The f
being o = and position of the center beirig; e free nl‘;_niform sampling is derived as

energy barriers between the valleys become small to be co
parable with thermal fluctuations with an increasevbfal- 5
lowing the dynamics to sample all over energy basins. E=U[T<E)], (20

Our analysis based on the staircase approximation gives a
natural way to realize an uniform sampling. Denotingfrom the extension of the staircase approximation to a con-
T5(Ef)=T;, an explicit form ofT(E) can be estimated by tinuous limit in Eq.(19). DeterminingTs=h"*(E) by in-
interpolating a maximum probability energy SeE,T;]  verting a functional relationshipy =h(T) of the canonical
from preliminary canonical simulations. Notice tHgt cor-  simulations, the fixed point condition of E¢20) can be
responds to the maximum probability energy for each casatisfied for allE. This means that in a large system, we can
nonical basin in Eq(19). In the present (Alg) system in @  optain an uniform sampling by constructifig, from an av-
gas phase, we construct the multicanonical weilBh{(E)  erage energy sdtU;,T;]. To confirm this, we applied our
[see Fig. 2)] by interpolatingE" obtained from the canoni- method to the solvated (Alg)system in which the dynamic
cal simulations aT;= 25, 50, 100, 150, 200, 300, 400, 500, energy range is very large. The multicanonical weight in Fig.
600, and 700 K. By substitutinﬁ;ix for the force scaling 3(a) is constructed from the average energy set obtained
function in Eq. (12), we performed multicanonical MD at from the canonical simulations &f=240, 260, 280, 300,
T,=700 K. Resulting energy distributioR,,(E) in Fig. 340, 380, 420, 460, and 500 K. Even though the sampling
2(b) shows an uniform sampling for all energy range. Weenergy range is huge the result shows an impressive uniform
would like to emphasize that our result is obtained directlydistribution over the whole energy region as in Figb)3
from the estimation off ,(E), contrary to conventional ap- However, for a small system like (Ala)n a gas phase, the
proaches correcting the multicanonical potentgE) via ~maximum probability energf® has to be used for an esti-
iterative simulations. mation of T,,. Even though there is a small difference be-
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tween Tax and To,e [See Fig. 2a)], the resultingP,,.
shows a significant deviation frof,,,, in Fig. 2(b).

When we approximatd& s by T, in Eq. (20), the fixed
point E* =U[T ,(E*)] plays a very important role in sam-
pling dynamics. Notice that the free energy potentig(E)
has stationary points &* corresponding to crossing points
of T, andTs. Qualitative properties of the sampling can be
characterized by identifying the stability of each fixed point,
which is determined by24]

T®/T,

au JT,
JT, JE

_ Cy(E*)

= , E (kcal/mol)
E* Ca( E* )

k(E*)=

(21)

whereC,=JE/JT,. The value ofx determines a local cur-
vature of the free energy potenti&d), at E*. The stable fixed
points corresponding te(E$) <1 attract nearby probability
currents toward it sincd, is concave aEg . Crossingeg ,

R, that was greater than, for E<EE becomes less thdn,

for E>E% . Near unstable fixed points of(E}))>1, the
probability currents flow away frork};, showing an oppo-
site behavior inR, due to the convexity ofA,. Conse-
quently, the sampling concentrates on the isolated stable
fixed points. The role of the fixed points can be demonstrated
numerically in the multicanonical simulation of the staircase
weight function. In Fig. 4b), the probability distributions
P';" obtained from an artificially constructeﬁﬁf’ [see Fig.
4(a)] are plotted forM =6 and 11, respectively. Notice that
the peaks oP’;" in each canonical basin exactly correspond
to the stable fixed point&;" determined by horizontal cross-

ing points of T and T,y in Fig. 4@). On the other hand,
PM shows a local minimum at the unstable fixed points cor-

responding to the basin boundarigs of T‘Z". Here we re-

gard T,,., as an exact weight because it gives the uniform
PDF as was shown in Fig(13).

The efficiency of the sampling depends on how easily the
dynamics escapes from one basin attraction and transits to
another one. The transition rate can be quantified by calcu-
lating the bias oR, at each basin attraction. In the staircase
approximation,R, shows a ratchet structufsee Fig. 4c)]
as

Log P(E)

10 20 30 50
E (kcal/mol)

-10 0 40

5)
&

E (kcal/mol)

FIG. 4. (8) TV(E) for M=6 (dotted ling and 11(dashed ling
scaled byT,="700 K for (Ala), in a gas phase. The crossing points

M-1

RZ”(E>~0.5§1 [1-y(E-E")IN(E), (22

where y,= fA/8wc;. The slope ofR,(E[), i.e. y;, be-

of Trnay (SOlid ling) andﬂ("(E) correspond to the fixed points in Eq.
(20). (b) The energy distribution®"(E) based onT™(E) show
maximum peaks at the stable fixed poisf in each canonical
b%sin.(c) Ratchet structure of the right transition probabilities of
R, (E).

comes very steep at low temperature energy region because o _ Y _

it is inversely proportional to the temperatufg. Severely be seen in Fig. ). The discontinuities inR, at basin
biasedR,, becomes an obstacle to the transition between thboundariesE; originate in the stepwise jumps i . On the
canonical basins around the stable fixed points, causing @ther hand,R,,.x shows a typical random walk producing
localization of the sampling in the low-energy regif2b]. uniform distribution ofP ..

To avoid a trapping of the sampling in low-energy region, the
basin attraction has to be reduced comparable with the sta-
tistical fluctuations okg T, by creating more fixed points. As
expected, the increase bf enhances the transitions between  The sampling process of molecular dynamic simulation in
the canonical basins by lowering the free energy barriers multicanonical ensemble has been analyzed by considering
between the basins and results in a broader sampling as c#me sampling process as a stochastic diffusion modeled by a

IV. CONCLUSION
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Langevin equation. The characteristic features of the samnterpolating the maximum probability energy points of the
pling dynamics have been identified by computing the trancanonical samplings at different temperatures. In contrast to
sition probability of the Markovian stochastic process. Thethe previous multicanonical MD updating the multicanonical
correspondence between the sampling and the stochastic piastential «(E) iteratively [14], our method is based on the
cess has been demonstrated numerically by comparing thdirect estimation of the derivative of the multicanonical po-
simulation results with the theoretical predictions. The nectential, i.e.,T (E).

essary condition for the uniform sampling has been derived
by analyzing the sampling dynamics in terms of the stochas-
tic model subject to the staircase temperature modulation.
Our analysis reveals that the dynamical origin of the uniform We thank Professor Akinori Kidera and Dr. Mitsunori
sampling in multicanonical MD is the formation of the infi- lkeguchi for useful discussions and suggestions. Also, we
nite number of the fixed points, which makes the dynamicghank M. S. Yukihisa Watanabe, Yoshiaki Mikami, and
move constantly between the canonical basin attractions byakashi Kurosawa for technical support. We acknowledge
lowering the free energy barriers. Finally, we showed that théhat this work was supported by the New Energy and Indus-
weight factor in multicanonical MD can be determined by trial Technology Development Organization.
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